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Summary 
There are 5 tetrominoes and 12 pentominoes—17 polyomino shapes in total.  The challenge is to 
find a group of only eight puzzle pieces that can make each of these 17 shapes.  This design task is 
actually much more difficult than the Loyd Polyominoes Puzzle itself.  There is a companion web 
site with downloadable files and other material at: http://www.marchland.org/loyd  
 
Background  
About 100 years ago, Sam Loyd showed how to 
dissect a Greek Cross to a square in only four 
pieces.  Note the small green triangle. 

  
This is the starting point for quite a complex project, so it is necessary to give precise definitions to 
all the words being used, particularly those referring to assemblies of things.  At one point we will 
have to consider collections of collections of collections. To be precise, seventeen "sets" of 
"groups" of "pieces".  Each technical term will be highlighted in CAPITALS AND BOLD on first use.  
The word SET will be used in its mathematical sense of a collection of objects, no two of which are 
identical.  But other technical words will just be defined as they are used.  As Humpty Dumpty said 
in Alice in Wonderland, "When I use a word, it means just what I choose it to mean." 
 
If the short side of the small green triangle is one unit, then its sides 
are 1, 2 and √5.  It is one of two BUILDING BLOCKS.  The other one 
is the unit square.  Both of them have an area of 1 unit.  
 
So, if the Greek Cross is 6 units wide and 6 units high as shown, then 
its total area is 20 units.  This means that each side of the big square 
is √20 or 2√5 and its perimeter is 8√5. 
  
For this project, a puzzle PIECE is made from one or more building blocks.  There are well over 30 
plausible shapes for puzzle pieces made in this way.  The useful pieces have an area of 1 to 4 units. 
Several puzzle pieces can be put together to make a target SHAPE, like Loyd's Greek Cross or 
Square.  The collection of pieces will be called a GROUP.  The purpose of this project will be to 
identify a group of pieces that can make many target shapes.  So, in the case of the Loyd Greek 
Cross and Square, the group of four pieces can make both of the two target shapes. 
 
The Greek Cross is one of the PENTOMINOES, shapes made 
using five squares.  There are 12 of them, usually known as I, 
L, P, R, S, T, U, V, W, X, Y and Z.  Some people use the letter “F” 
for the R pentomino, and “N” for the S pentomino.  The square 
is one of the TETROMINOES and there are 5 of them—square, 
I, L, skew and T.  They are shown sloping to the right to match 
the Loyd dissection above.  The skew may be "S"-shaped or 
"Z"-shaped.  



That makes a total of 17 target shapes, to be known as the POLYOMINOES, sometimes spelled 
"polyominos".  The task is to find a group of the smallest number of puzzle pieces that can make 
each of these 17 shapes. 
 
First Attempts 
A group of 16 triangles and 4 squares can make all of the 
pentominoes and tetrominoes.  For the tetrominoes, there are 10 
triangles around the perimeter and the other pieces fill the interior.  
But 20 pieces is a big number.  Can it be reduced? 
 

 

By combining some building blocks in pairs, this number 20 can be 
reduced to about 13, as shown for the T and S tetrominoes.  But it is 
difficult to get any lower using this method. 
  
A research group at the Politecnico di Torino published this group 
of pieces that can make all 17 polyominoes.  Web reference: 
http://www.iread.it/Poly/tepe_diss_en.php 

It has only nine pieces, five of them being the basic triangles. 

 
Analysis of the Problem 
It is not easy to identify the most appropriate 
puzzle piece shapes to try.  The unit square and 
small triangle can be glued together in many ways 
to make plausible puzzle pieces, ranging in area 
from one unit to six.  Then each group of pieces 
that look promising must be tested against all 17 
of the target shapes.  A very tedious process! 

 

 
No puzzle piece can be larger than 6 units.  In the 
left diagram a white I pentomino is laid over a grey 
W pentomino.  The pink rectangular area common 
to both has an area of 8 units.  But when this is 
overlaid by an I tetromino, the pink area is 
reduced in one of the three ways as shown.  

 
There are about 30 ways of combining small triangles and squares to make plausible puzzle 
pieces.  These can be assembled into hundreds of groups and each group has to be tested to see if 
it can make all 17 of the target polyomino shapes.  Obviously a computer is needed to do some of 
the computational “heavy lifting”, and a program such as "Burr Tools" is called for.  But, even then, 
a lot of human intervention is required, together with a rather sophisticated search procedure. 
 
Using Burr Tools to Solve Puzzles 
To illustrate how this can be done, we will set up an example problem and use Burr Tools to help 
in the search for a solution.  This worked example is probably simple enough to be solved without 
a computer, but the real application, involving all the polyominoes, needs both Burr Tools and 



some new supporting computer programs, both for data preparation and for analysis.  These will 
not be described in detail, but their main features should be fairly easy to follow. 
 
In this example there are three target shapes: "block", 
"gamma" and "cross".  All have the same area, 21 units. 
 
And there is a collection of pieces that is more than enough 
to cover that area.  The pieces are called V, I, L, T, W, Y and 
R.  They have a combined area of 29 units.  So, any solution 
will use some of the puzzle pieces, but not all of them.  

 
 

 

 
Here are some of the solutions for the "cross" 
target shape.  The group of pieces for the first 
and third one is VLTRW, and the groups for the 
others are shown.  But although there are many 
solutions, there are only three different groups.  

 
The shape “block” has several possible groups of pieces: 

VLTRY, VLTRW, ILTRY. 
And for “gamma”, the groups are: 

VLTRW, ILTRY, VLTWY. 
 
The task is to identify a single group of pieces that can 
make ALL THREE of the target shapes.  The results can be 
drawn on a Venn diagram.  Each of the circles is the set of 
groups of pieces that can make one particular shape. 
 
So the common group is VLTRW, shown in the centre: 

 

 
And here it can be seen that, indeed, the group of 
pieces VLTRW can make each of the three target 
shapes. 

 
Adapting Burr Tools for the [1, 2, √5] triangle 
Burr Tools usually deals with squares or equilateral triangles.  So a 
modification is needed for the [1, 2, √5] triangle.  These diagrams 
show how this was done.  Everything was quadrupled in size and 
the unit square and triangle were represented like this: 
 

 

It is a laborious and error-prone task to get the coding of 
all the puzzle pieces and polyomino shapes exactly right. 
 
So a small shape definition program, written in Python, 
was used to help prepare the puzzle data.  These diagrams 
show the T pentomino and the T tetromino.  

 



The xmpuzzle file format 
Burr Tools uses an XML format to describe the composition of puzzle pieces and target shapes.  
Everything is embedded in a file with an xmpuzzle extension.  Usually this file is "zipped" before 

being written to disc.  The xmpuzzle file also shows the details of the puzzle and, if some 
solutions have been found, these are embedded in the file as well before it is saved back to disc. 
 
So it is possible to unzip these files, make some changes manually, and present them again to Burr 
Tools for further computation. 
 
The structure of an xmpuzzle file is a bit complicated, but here is a condensed version of the file 
for the "block gamma cross" example puzzle above.  Some of the XML has been removed for 
brevity, as well as parts of those sections which have a lot of repetition. 
 
The main sections are these: 

• A definition of all the shapes, both target shapes and puzzle pieces (in yellow). 
• Indication of which shape is the target. 
• Choice of the pieces to be used and how many of each (in blue). This might be a fixed 

number or a range of numbers. 
• If the program has been run, the solutions are written back into the file (in pink). 

 
<?xml version="1.0"?> <puzzle version="2"> <gridType type="0"/> <colors/> 

 <shapes> 

  <voxel x="3" y="7" z="1" type="0">#####################</voxel> 

  <voxel x="5" y="5" z="1" type="0">###__###__###############</voxel> 

          --(more lines like this)-- 

  <voxel x="4" y="2" z="1" type="0">####__#_</voxel> 

  <voxel x="3" y="3" z="1" type="0">_#_##__##</voxel> 

 </shapes> 

 <problems> 

  <problem state="2" assemblies="6" solutions="0" time="0"> 

   <shapes> 

    <shape id="3" min="0" max="1"/> 

    <shape id="4" min="0" max="1"/> 

         --(more lines like this)-- 

    <shape id="9" min="0" max="1"/> 

   </shapes> 

   <result id="0"/>  <bitmap/> 

   <solutions>   <solution> 

     <assembly>0 0 0 0 x 2 6 0 10 1 0 0 18 x 0 3 0 18 2 4 0 10</assembly> 

     <assembly>0 0 0 0 x 2 6 0 10 1 4 0 16 2 2 0 10 x 0 4 0 20</assembly> 

        --(more lines like this)-- 

     <assembly>x 0 1 0 0 0 6 0 20 0 1 0 2 x 2 4 0 22 0 3 0 0</assembly> 

    </solution>  </solutions>  </problem>  </problems>  <comment/> 

</puzzle> 
 
Without going into all the details, it can be seen that the <voxel> sections (in yellow) are 
describing the shapes of the three target shapes and the seven puzzle pieces.  The symbols "#" 
and "_" (sharp and underscore) represent filled and empty cells in a matrix. 
 



The <solutions> section (in pink) describes the solutions that have been found.  The numbers 

come in sets of four (with a simple "x" if a piece is not being used).  So it is a straightforward 
programming task to do some string processing and identify the group of pieces that has been 
used for any one solution.  For our purposes the group is more relevant than the full solution. 
 
Putting it all together 
Having described the various logical components of the investigation, let's have a look at all the 
procedures involved.  Two sorts of experiments were done: 

• A search for a group of pieces, with no duplicates, which can make each of the 17 
polyominoes. 

• A search for the smallest number of pieces, this time allowing any number of duplicates. 
 
Suppose we have a BOX of pieces, possibly containing some duplicates, and we present it to Burr 
Tools together with just one of the 17 polyomino shapes.  We will then get a COLLECTION of 
SOLUTIONS for that particular shape.  This process is then repeated 16 more times to cover all the 
target shapes. 
 
The choice of the pieces in the box is a matter for the human investigator.  If there are too few 
pieces, or if they are badly chosen, there may not be enough variety for a complete solution to 
emerge.  But, if there are too many pieces, the computing complexity may be too great. 
 
Within the collection of solutions for one target shape, there may be a group of pieces that is used 
for more than one solution.  We are more interested in the groups than in the solutions.  So the 
collection of groups needs to be reduced to a SET with no repetitions.  The word set is being used 
in its mathematical sense of a collection of objects, no two of which are identical.  Each object in 
the set is a group of puzzle pieces, usually between 8 and 11 pieces in any one group. 
 
In this way, we will get 17 sets of groups of pieces and we need to find a group that is present in all 
17 sets.  So we make an “intersection” of the 17 sets, looking for the one element that is present in 
all of them. This way we hope to get a group of pieces that can be used to make all 17 polyominoes. 
 
There may be several such groups, or there may be none at all.  This would mean that, for that 
particular selection of pieces in the box, there is no group that can make all of the 17 target shapes.  
So it may be necessary to adjust the box of plausible pieces and try again.  That might mean 
doubling up on a few pieces, including or inventing new ones and leaving out others. 
 
Mirror Image Target Shapes 
And now for a small complication.  The puzzle pieces that we are working with are all 
non-symmetrical, except for the unit square.  But the only angles in the polyomino target shapes 
are right angles. 
 
So it is not possible to turn over just one puzzle piece and leave the others as they were.  
Therefore, unlike most put-together puzzles, it is NOT permitted to turn over any piece, unless all 
of them are turned over. 
 



 
This means that if there is a solution to one target shape, the P pentomino 
for example, there will be quite a different solution for its mirror image, 
as seen in this nine-piece assembly.  
 
Or there could be a polyomino which has a perfectly valid solution, but its 
mirror image has no solution at all. 
 

 

So, although there are just 12 pentominoes and 5 tetrominoes, there are actually 8 more shapes to 
be considered if the mirror images of the non-symmetric polyominoes are included.  This means 
that we can, for example, include the "skew tetromino" shape if there is a solution for its "Z" 
configuration, even though there is no solution for its "S" configuration. 
 

A Nine-Piece Group with no Duplicate Pieces 
Here is a group of 9 pieces that are all different.  It 
can make all the 17 polyominoes. 
 
 

 

Using this nine-piece group, 
there are several solutions for 
all the polyominoes and some, 
but not all, of their mirror 
images. 
 
This diagram gives an indication 
of the complexity of the 
solutions in this project. 
 
The skew tetromino has been 
drawn in its "Z" configuration.  
That is because there is not a 
solution in its "S" configuration. 
 
There are also no solutions for 
the mirror image shapes of the L 
tetromino and the R, S, and Z 
pentominoes. 

 
 



Eight-Piece Groups 
So far, three groups of eight 
pieces have been found, one of 
which is shown here. 
 
Some solutions using this group 
are shown at far right. 

 
 

 
This was my Exchange Gift at the Gathering for Gardner in Atlanta in 2018.  It has quite a small 
number of solutions for all of the tetrominoes and pentominoes and nearly all of the mirror image 
shapes, too.  So it is a challenging collection of puzzles.  It can't make the "Z" configuration of the 
skew tetromino, so the total number of puzzles is 24, not 25. 
 
And here are two more groups of eight pieces which can make the 17 polyominoes.  In each case 
the top row of five pieces is the same as in the group above. 
 

  
 
Conclusions and Opportunities for Further Work 
The procedure to find these groups of pieces was far from straightforward.  The number of 
intermediate solutions found by Burr Tools was huge, and the computer frequently ran out of 
storage and just stopped. 

Sometimes a consideration of the target shapes demonstrated that a particular 
puzzle piece could be used once but not twice.  The long edge of the big triangle 
can't, for example, fit twice into the perimeter of the T tetromino. 

 
So it has not been possible to do an exhaustive search for the very best groups of pieces that can 
make all 17 polyominoes.  But the difficulty of finding a group of just eight pieces suggests strongly 
that no seven-piece group exists. 
 
The solution in nine pieces may not be the only one, and it is possible that there is an eight-piece 
group with all the pieces different, which is still waiting to be found.  Bigger computer needed! 
 
Please email me with comments, discoveries and suggestions. 


